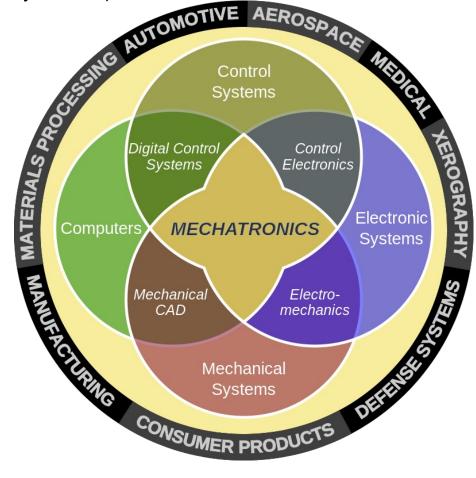


Mechatronic Modeling and Design with Applications in Robotics

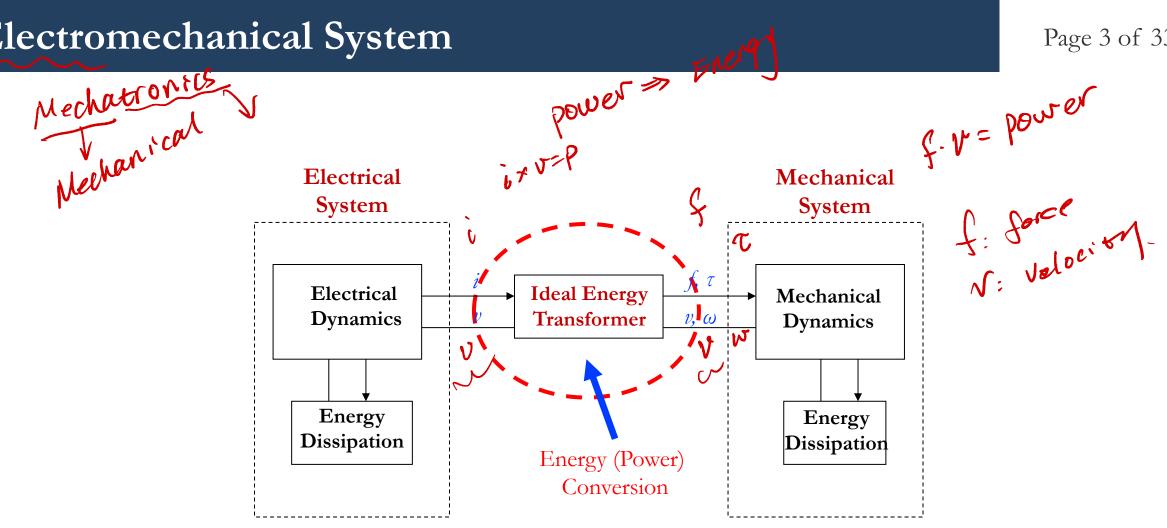
Basic Model Elements

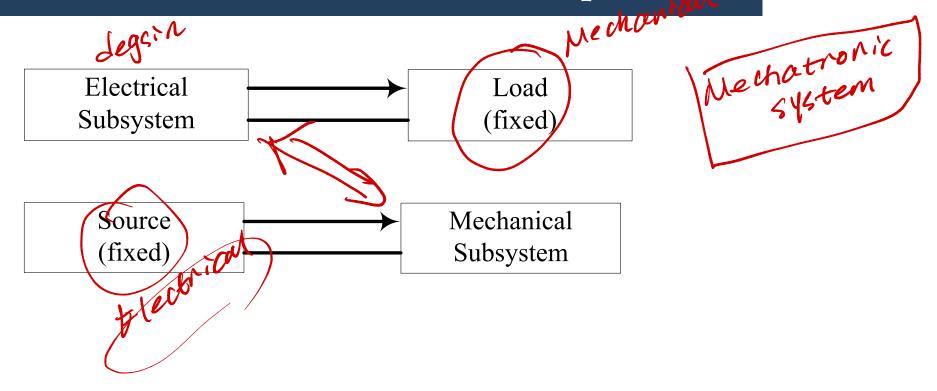
Mechatronic Systems


The field of mechatronics primarily concerns the integration of mechanics and electronics.

(e.g., mechanical, fluid, thermal and electrical/electronic systems)

They can serve functions of


- > Structural support
- ➤ Load bearing
- ➤ Mobility
- Transmission of motion and energy
- > Actuation
- > Manipulation
- > Sensing
- > Control


https://en.wikipedia.org/wiki/Mechatronics

Electromechanical System

An electromechanical system / mechatronic system

Distinction Between Mechanical and Electronic Components

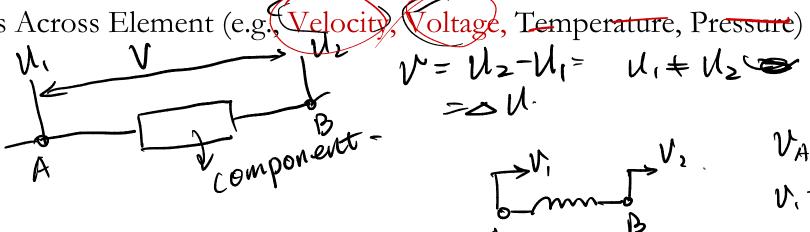
- Energy (or Power)
- * Bandwidth (e.g., Speed and Time Constant)

Basic Electrical Components

Required and needed in this course:

- Mechanical Components
- > Electrical Elements

Should understand:


> Fluid Elements

> Thermal Elements

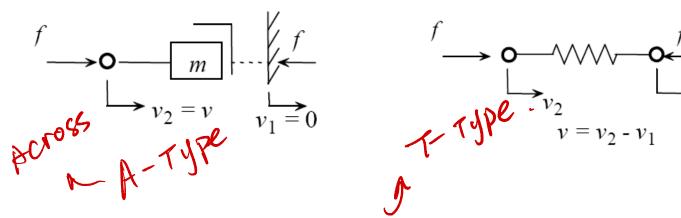
Reference.

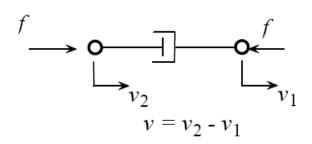
Across and Through Variables

Across Variable: Varies Across Element (e.g.

Through Variable: Remains Unchanged Through Element (e.g., Force, Current, Heat

Transfer Rate, Fluid Flow Rate) 1,





Sources: Velocity and force/torque

Variables: Velocity (across variable) and force (through variable)

Mechanical Element: Mass (Inertia)

Mass (Inertia) Element (A-Type Element)

Constitutive Equation (Newton's 2nd Law):

$$f = m \frac{dv}{dt}$$

where m = mass(inertia)

Power = fv = rate of change of energy \rightarrow

$$E = \int f v dt = \int m \frac{dv}{dt} v dt = \int m v dv$$

 $\Rightarrow \text{Energy } E = \frac{1}{2}mv^2 \text{ (Kinetic Energy)} \Rightarrow \text{Energy storage element}$ $\Rightarrow \text{Across Variable}.$

mass. /Inertia. A-Type Element.

(Newton's 2nd Law):
$$f = m \frac{dv}{dt}$$

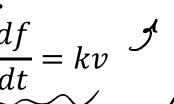
$$f = m \frac{dv}{dt}$$
Fosition Reference
$$f = m \frac{dv}{dt}$$
Fosition Reference
$$f = m \frac{dv}{dt}$$
For each of the second second

Observations: Mass (Inertia)

- を=生いび An inertia is an energy storage element (kinetic energy).
- ➤ Velocity (across variable) represents the state of an inertia element → "A-Type Element"

Note: 1. Velocity at any t is completely determined from initial velocity and the applied force; 2. Energy of state-space modet:

V: State variable. inertia element is represented by v along.


- \triangleright Hence, v is a natural output (or response) variable for an inertia element, which can represent its dynamic state (i.e., state variable), and f is a natural input variable for an inertia element.
- > Velocity across an inertia element cannot change instantaneously unless an infinite force is applied to it.

Mechanical Element: Spring (Stiffness)

Spring (Stiffness) Element (T-Type Element)

Constitutive Equation (Hooke's Law):

where *k*=stiffness

Element)
$$f = kD$$

aw):
$$\frac{df}{dt} = kv$$

$$f = k$$

$$f = k$$

$$f = k$$

$$f = k$$

Note: Differentiated version of familiar force-deflection Hooke's law in order to use

velocity (as for inertia element)

$$E = \int fvdt = \int f \frac{1}{k} df$$

velocity (as for inertia element)
$$E = \int fvdt = \int f \frac{1}{k} df$$

$$E = \int fvdt = \int f \frac{1}{k} df$$

$$E = \int fvdt = \int f \frac{1}{k} df$$

$$E = \int fvdt = \int f \frac{1}{k} df$$

$$Force$$

$$E = \int fvdt = \int f \frac{1}{k} df$$

$$Force$$


$$Forc$$

Observations: Spring (Stiffness)

- A spring (stiffness element) is an energy storage element (elastic potential energy).
- Force (through variable) represents state of spring element \Rightarrow "T-Type Element". Note: 1. Spring force of a spring at time t is completely determined from initial force and applied velocity; 2. Spring energy is represented by f alone. f: State f f:
- Force *f* is a natural output (response) variable, and *v* is a natural input variable for a stiffness element.
- Force through a stiffness element cannot change instantaneously unless an infinite velocity is applied to it.

Mechanical Element: Damping (Dissipation)

Damping (Dissipation) Element (D-Type Element)

Constitutive Equation: f = bv where b=damping constant (damping coefficient); for viscous damping

The power dissipated depending on the velocity v:

$$P = bv^2$$

Observations: Damping (Dissipation)

- \triangleright Mechanical damper is an energy dissipating element (D-Type Element).
- \triangleright Either force f or velocity v may represent its state.

No new state variable is defined by this element.

T-type

Lements.

Source

Variables.

Type

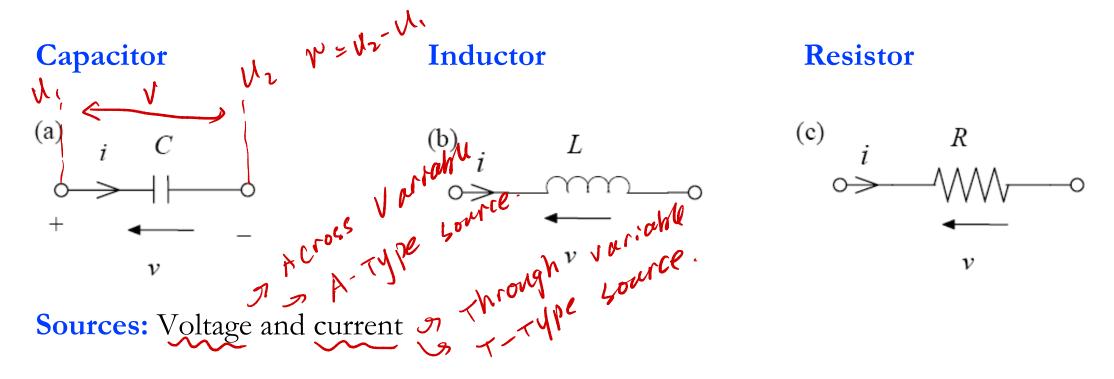
Source

Variables.

Lements.

Rotational Mass:

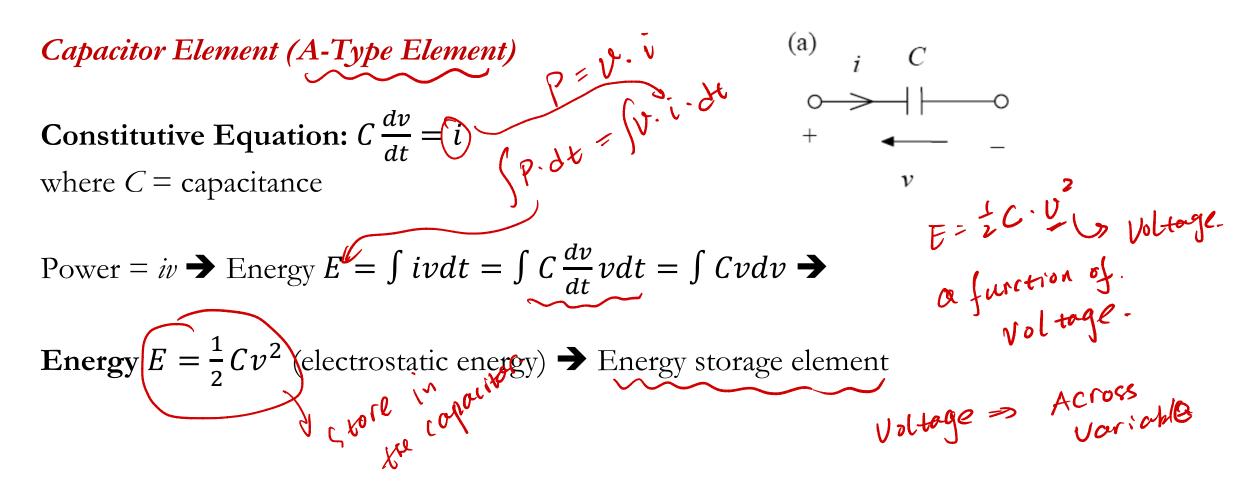
$$E = \frac{1}{2}I\omega^2 \qquad f \to \tau$$


Torsional Spring:

$$E = \frac{1}{2} \frac{T^2}{k}$$

Rotary Damper:

$$P = c\omega^2$$


Electrical Elements

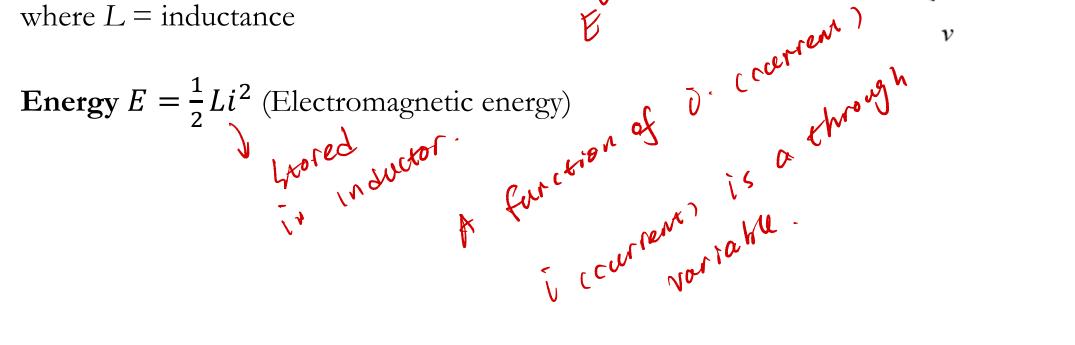
Variables: Voltage (across variable) and current (through variable)

Electrical Element: Capacitor

Variables: Voltage (across variable) and the current (through variable)

Observations: Capacitor

➤ Voltage (across variable) is state variable for a capacitor → "A-Type Element".


➤ Voltage is a natural output variable and current is a natural input variable for a capacitor.

hote space modeling V: state vaviable.

➤ Voltage across a capacitor cannot change instantaneously unless an infinite current is applied.

Inductor Element (T-Type Element)

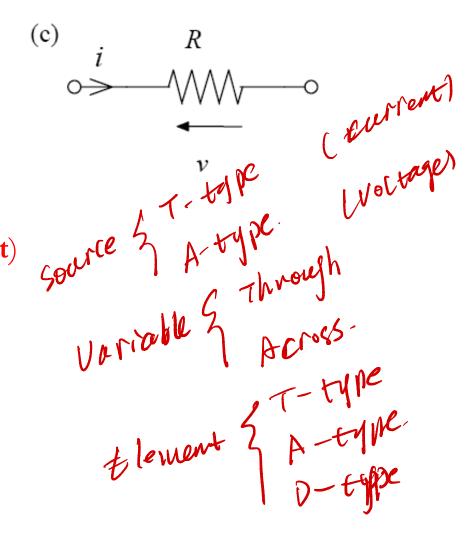
Constitutive Equation:
$$L \frac{di}{dt} = v$$
 where $L = \text{inductance}$

Observations: Inductor

Current (through variable) is state variable for an inductor \Rightarrow "T-Type Element".

Current is a natural output variable and voltage is a natural input variable for an inductor.

Current through an inductor cannot change instantaneously unless an infinite voltage is applied.


Electrical Element: Resistor (Dissipation)

Resistor Element (D-Type Element)

Constitutive Equation: v = Ri (Ohm's law) where R = resistance

Observations:

- 1. This is an energy dissipating element (D-Type Element)
- 2. Either i or v may represent the state
- 3. No new state variable is defined by this element.

Components	Constitutive Equation	Energy Stored or Power Dissipated
Capacitor	$i = C \frac{dv}{dt}$	$E = \frac{1}{2}Cv^2$
Inductor	$v = L \frac{di}{dt}$	$E = \frac{1}{2}Li^2$
Resistor	v = iR	$P = \frac{v^2}{R} \text{ or } P = I^2 R$

Note:

- Voltage is a natural output variable and current is a natural input variable for a capacitor.
- Current is a natural output variable; voltage is a natural input variable and voltage is a natural state variable for an inductor.

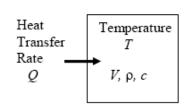
Mechanical-Electrical Analogy

aron P.S.	System Type System-Variables:	Mechanical	Electrical			
	Through-Variables	Force f	Current i			
	Across- Variables	Velocity v	Voltage v			
	System	m	C			
	Parameters	k	1/L			
		b gystem	1/R			
b 1/R Nechatronic system 1/R						

thermal fluid

Thermal Elements

Variables: Across variable temperature (T) and through variable heat transfer rate (Q).


Thermal Capacitor (A-Type Element)

Consider control volume V of fluid with, density ρ , and specific heat c.

Constitutive Equation: Net heat transfer rate into the control volume $Q = \rho V c \frac{dT}{dt}$

$$C_t \frac{dT}{dt} = Q$$

$$C_t = \rho vc = \text{thermal capacitance of control volume}$$

Observations:

Temperature T is state variable for thermal capacitor (from usual argument) \rightarrow "A-Type Element"

Heat transfer rate Q is natural input and temperature T is natural output for this element. This is a storage element (stores thermal energy)

Note: There is no thermal "inductor" like storage element with state variable Q.

Thermal Elements (cont'd)

Thermal Resistance (D-Type Element)

Three basic processes of heat transfer \rightarrow three different types of thermal resistance

Constitutive Relations

Conduction:
$$Q = \frac{kA}{\Delta x}T$$

k = conductivity; A = area of cross section of the heat conduction element; $\Delta x = \text{length of heat conduction that has a temperature drop of } T$.

→ Conductive resistance
$$R_k = \frac{\Delta x}{kA}$$

Convection: $Q = h_c AT$

 b_c = convection heat transfer coefficient; A = area of heat convection surface with temperature drop T

→ Conductive resistance
$$R_c = \frac{1}{h_c A}$$

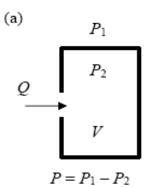
Radiation: $Q = \sigma F_E F_A A (T_1^4 - T_2^4)$ \rightarrow a nonlinear thermal resistor

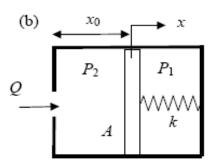
 σ = Stefan-Boltzman constant

 F_E = effective emmissivity of the radiation source (of temperature T_1)

 F_A = shape factor of the radiation receiver (of temperature T_2)

A = effective surface area of the receiver.


Variables: Pressure (across variable) P and volume flow rate (through variable) Q


Fluid Capacitor (A-Type Element)

Constitutive Equation: $C_f \frac{dP}{dt} = Q$

Note 1: Stores potential energy (a "fluid spring")

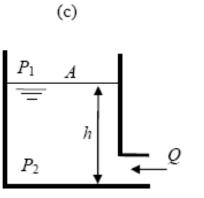
Note 2: Pressure (across variable) is state variable for fluid capacitor → "A-Type Element"

Three Types: Fluid compression; Flexible container; Gravity head

1a. For liquid control volume V of bulk modulus β : $C_{bulk} = \frac{V}{\beta}$

1b. For isothermal (constant temperature, slow-process) gas of volume V and pressure:

$$C_{comp} = \frac{V}{P}$$

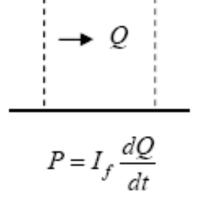

1. For adiabatic (zero heat transfer, fast-process) gas: $C_{comp} = \frac{V}{kP}$

 $k = \frac{c_p}{c_v}$ = ratio of specific heats at constant pressure and constant volume

2. For incompressible fluid in a flexible vessel of area A and stiffness k: $C_{elastic} = \frac{A}{k}$

Note: For a fluid with bulk modulus, the equivalent capacitance = $C_{bulk} + C_{elastic}$.

3. For incompressible fluid column of area of cross-section A and density ρ : $C_{grav} = \frac{A}{\rho g}$


Fluid Elements (cont'd)

Fluid Inertor (T-Type Element)

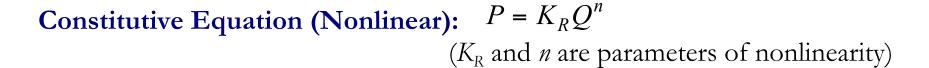
Constitutive Equation:
$$I_f \frac{dQ}{dt} = P$$

Note 1: Volume flow rate Q (through variable) is state variable for fluid inertor \rightarrow "T-type Element"

Note 2: It stores kinetic energy, unlike the mechanical *T*-type element (spring), which stores potential energy.

With uniform velocity distribution across A over length segment Δx :

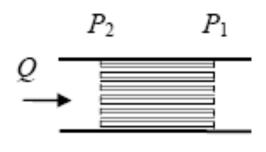
Fluid inertance
$$I_f = \rho \frac{\Delta x}{A}$$


For a non-uniform velocity distribution:

Fluid inertance
$$I_f = \alpha \rho \frac{\Delta x}{A}$$
 (correction factor α)

For a pipe of circular cross-section with a parabolic velocity distribution, $\alpha = 2.0$

Fluid Resistor (D-Type Element)

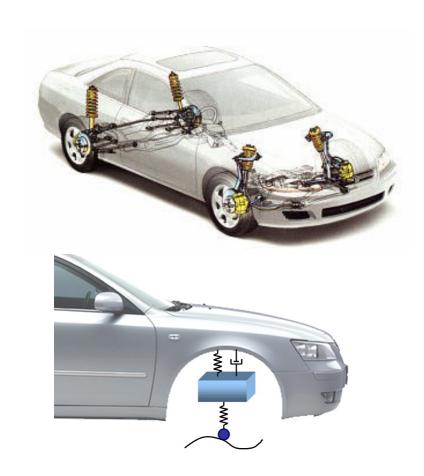

Constitutive Equation (Linear): $P = R_f Q$

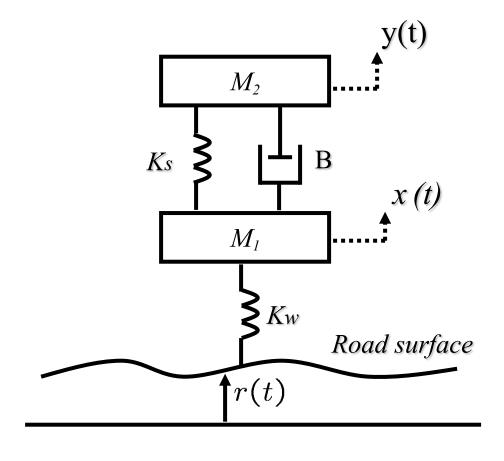
- (a) With circular cross-section of diameter d: $R_f = 128 \ \mu \frac{\Delta x}{\pi d^4}$
- (b) With rectangular cross-section of height $b \ll width w$: $R_f = 12\mu \frac{\Delta x}{wb^3}$

Note: μ = absolute viscosity (or, dynamic viscosity); v = kinematic viscosity with $\mu = v\rho$

$$P = R_f Q$$

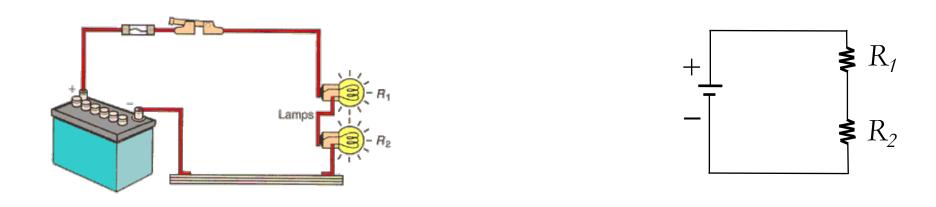
Analogies and Constitutive Relations

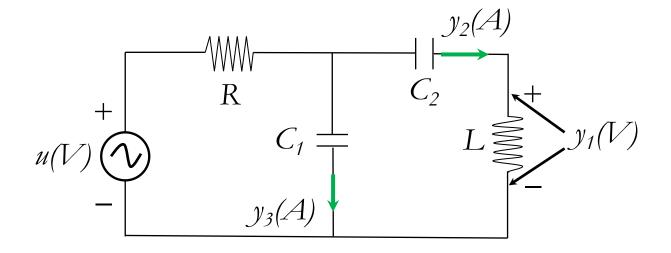

	Constitutive Relation for			
System Type	Energy Storage Elements		Energy Dissipating Elements	
· · · · · ·	A-Type (Across) Element	T-Type (Through) Element	D-Type (Dissipative) Element	
Translatory- Mechanical $v = \text{velocity}$ $f = \text{force}$	Mass (Newton's 2^{nd} Law) $m = mass$	Spring (Hooke's Law) k = stiffness	Viscous Damper $b = \text{damping constant}$	
Electrical $v = \text{voltage}$ $i = \text{current}$	Capacitor $C = \text{capacitance}$	Inductor $L = inductance$	Resistor R = resistance	
Thermal $T = \text{temperature}$ difference $Q = \text{heat transfer rate}$	Thermal Capacitor C_t = thermal capacitance	None	Thermal Resistor R_t = thermal resistance	
Fluid $P = \text{pressure}$ difference $Q = \text{volume flow rate}$	*	Fluid Inertor I_f = inertance	Fluid Resistor R_f = fluid resistance	


Through and Across Variables

System Type	Through Variable	Across Variable
Hydraulic/Pneumatic	Flow Rate	Pressure
Electrical	Current	Voltage
Mechanical	Force	Velocity
Thermal	Heat Transfer	Temperature

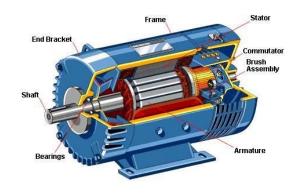
Building Up Mechanical Systems

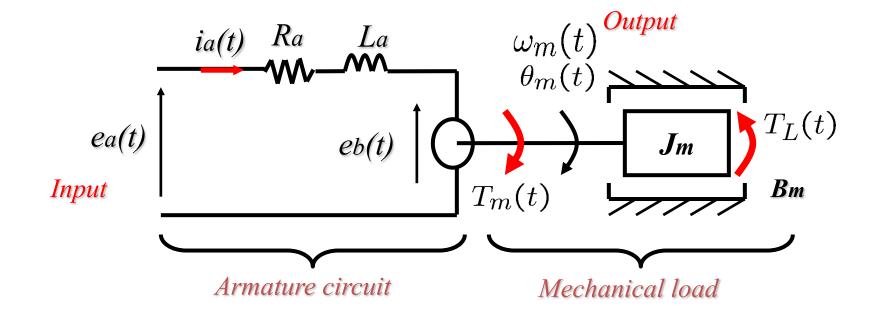

Suspension of a car



Building Up Electrical Systems

Electrical Circuit





Building Up Mechatronic Systems

DC Motor (will discuss it in detail in later chapter)

The End!!